Sketsalahgrafik fungsi berikut ini. a. y = 2x2 + 9x November 07, Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 102, 103. Bab 2 Persamaan dan Fungsi Kuadrat Latihan 2.3 Hal 102, 103 Nomor 1 - 10 Essai. Sketsalah grafik fungsi berikut ini. a. y = 2x2 + 9x.
PembahasanIngat bahwa titik potong dengan sumbu y maka nilai x = 0 titik ekstrim − 2 a b ​ , − 4 a b 2 − 4 a c ​ Titik potong dengan sumbu y y = − 2 x 2 + 4 x − 6 y = − 2 0 2 + 4 0 − 6 y = − 6 Jadi titik potong dengan sumbu y berada pada titik 0 , − 6 . Titik ekstrim x e ​ ​ = = = = ​ − 2 a b ​ − 2 − 2 4 ​ − − 4 4 ​ 1 ​ y e ​ ​ = = = = = ​ − 4 a b 2 − 4 a c ​ − 4 − 2 4 2 − 4 − 2 − 6 ​ − − 8 16 − 48 ​ − − 8 − 32 ​ − 4 ​ Jadi titik ekstrimnya 1 , − 4 Dengan demikian, grafiknya dapat digambarkan sebagai berikutIngat bahwa titik potong dengan sumbu maka nilai titik ekstrim Titik potong dengan sumbu Jadi titik potong dengan sumbu berada pada titik . Titik ekstrim Jadi titik ekstrimnya Dengan demikian, grafiknya dapat digambarkan sebagai berikut
10sketsalah grafik fungsi berikut ini y=2x2 +9x Di dalam lingkaran yang berdiameter 20cm terdapat sebuah juring dengan besar sudutpusat 450. Luas juring tersebut adalah.
Halo, Roy H! Kakak bantu ya. Jawabannya Ada pada gambar di bawah. Pembahasan Langkah-langkah untuk menggambar grafik fungsi kuadrat y = fx = ax² + bx + c 1. Tentukan diskriminan D = b² − 4ac a. Jika D > 0, maka memotong sumbu-x di dua titik b. Jika D = 0, maka menyinggung sumbu-x di satu titik c. Jika D 0, maka fungsi terbuka ke atas dan memiliki nilai minimum b. Jika a 0, maka fungsi kuadrat tersebut memotong sumbu-x di dua titik 2. Sehingga titik potong terhadap sumbu-x, maka y=0 y=2x²+9x 0=2x²+9x difaktorkan 0=x2x+9 x=0 atau x=-9/2 →0,0 dan -9/2,0 3. Titik potong terhadap sumbu-y, jika x = 0 y=2x²+9x y=20²+90 y =0 → 0,0 4. Persamaan sumbu simetri yaitu x = −b/2a x = −b/2a x = −9/22 x = -9/4 5. Karena a > 0, maka memiliki nilai minimum y = -D/4a yaitu y = -D/4a y=-81/42 y=-81/8 6. Titik balik minimum −b/2a, -D/4a = -9/4, 81/8 7. Titik-titk yang lainnya x = −2 -> y=2x²+9x y=2-2²+9-2 y = 8 -18 y = -10 →−2,-10 x = -4 -> y=2x²+9x y=2-4²+9-4 y = 32 -36 y = -4 → -4,-4 8. dibuat parabola yang melalui titik-titik tersebut Jadi, gambar grafik fungsi kuadrat y=2x²+9x adalah
Jawaban: sketsa grafik seperti gambar terlampir. Untuk menjawab soal ini perlu digambar terlebih dahulu kurva nya dengan mencari titik potong dengan sumbu x, sumbu y, serta dicari titik puncak/balik. Jika diberikan persamaan y = ax^2 + bx + c, maka titik baliknya adalah (xp,yp) dengan xp = -b/ (2a) yp = (b^2-4ac)/ (-4a) Kurva y=2x^2+9x
Sketsalahgrafik fungsi berikut ini. - 17944209 safiradwiyanti8 safiradwiyanti8 28.09.2018 Matematika Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Sketsalah grafik fungsi berikut ini. A. y=2x²+9x B. y=8x²-16x+6 1 Lihat jawaban kurang jelas deh gambarnya Iklan
Sketsalahgrafik fungsi berikut a) 2x ^2 +9x - 17840132 dinda8679 dinda8679 24.09.2018 Matematika Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Sketsalah grafik fungsi berikut a) 2x ^2 +9x b) y= 8x^2-16x+6 1 Lihat jawaban Adakah bokeo Iklan
Jawabanpaling sesuai dengan pertanyaan Sketsalah grafik fungsi berikut y=2x^(2)+9x. Belajar. Primagama. ZeniusLand. Profesional. Fitur. Paket Belajar. Promo. Testimonial. Blog. Panduan. Bagikan. Sketsalah grafik fungsi berikut y = 2 x 2 + 9 x y=2x^2+9x y = 2 x 2 + 9 x . Jawaban. Untuk menjawab soal ini, kita akan coba menentukan nilai
Berikutini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 102, 103. Bab 2 Persamaan dan Fungsi Kuadrat Latihan 2.3 Hal 102, 103 Nomor 1 - 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 9 di semester 1 halaman 102, 103.
lGssH. 3iq1q9fkb2.pages.dev/3913iq1q9fkb2.pages.dev/1753iq1q9fkb2.pages.dev/3003iq1q9fkb2.pages.dev/83iq1q9fkb2.pages.dev/2453iq1q9fkb2.pages.dev/453iq1q9fkb2.pages.dev/2733iq1q9fkb2.pages.dev/3453iq1q9fkb2.pages.dev/357
sketsalah grafik fungsi berikut ini y 2x2 9x